

Expanding Cybersecurity and Infrastructure Beyond the Border

Deb Agarwal

DAAgarwal@lbl.gov

Lawrence Berkeley Laboratory

Threats

- Viruses
- Worms
- Malicious software downloads
- Spyware
- Stolen credentials
- Insider Threat
- Denial of service
- Root kits
- Session hijacking
- Agent hijacking
- Man-in-the-middle
- Network spoofing
- Back doors
- Exploitation of buffer overflows and other software flaws
- Phishing
- Audits / Policy / Compliance
- ?????

Threats

- Viruses
- Worms
- Malicious software downloads
- Spyware
- Stolen credentials
- Insider Threat
- Denial of service
- Root kits
- Session hijacking
- Agent hijacking
- Man-in-the-middle
- Network spoofing
- Back doors
- Exploitation of buffer overflows and other software flaws
- Phishing
- Audits / Policy / Compliance
- ?????

Example - Credential Theft

Widespread compromises

- Over 20++ sites
- Over 3000+ computers
- Unknown # of accounts
- Very similar to unresolved compromises from 2003

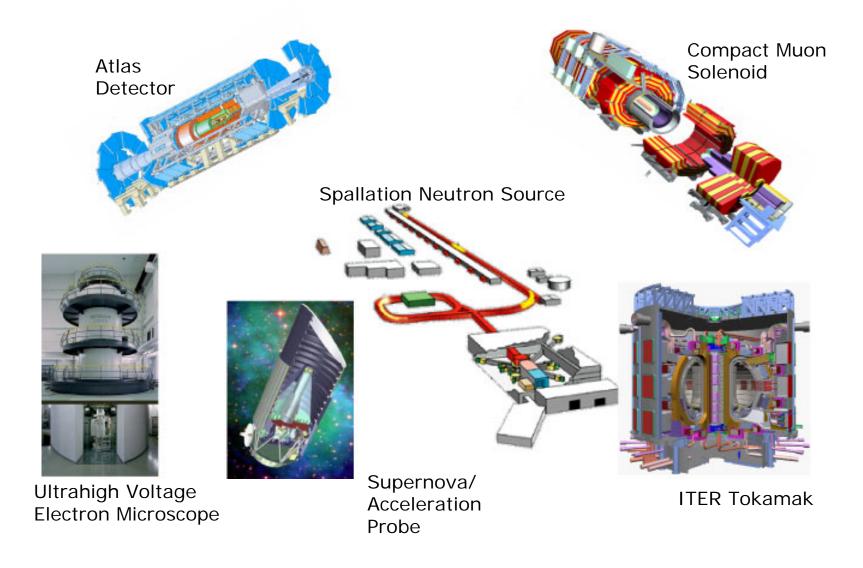
Common Modus Operandi

- Acquire legitimate username/password via keyboard sniffers and/or trojaned clients and servers
- Log into system as legitimate user and do reconnaissance
- Use "off the shelf" rootkits to acquire root
- Install sniffers and compromise services, modify ssh-keys
- Leverage data gathered to move to next system
- The largest compromises in recent memory (in terms of # hosts and sites)

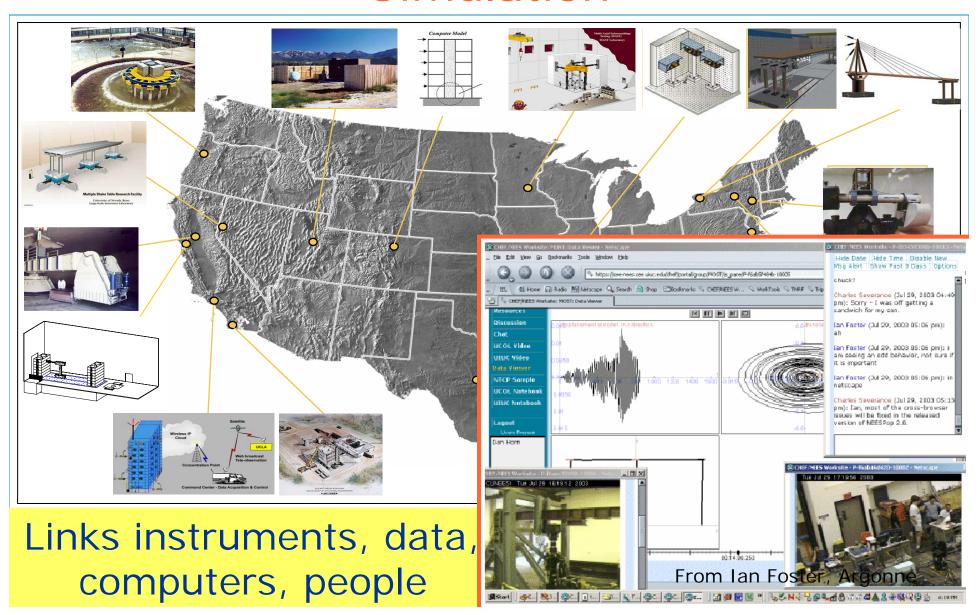
Cybersecurity Trend - Reactive

- Firewall everything only allow through vetted applications with strong business need
- Users never have administrator privileges
- All software installed by administrators
- All systems running automated central configuration management and central protection management
- Background checks for ALL government employees, contractors, and users with physical presence for issuance of HSPD-12 cards (PIV)
- No access from untrusted networks
- Conformance and compliance driven
- It is a war

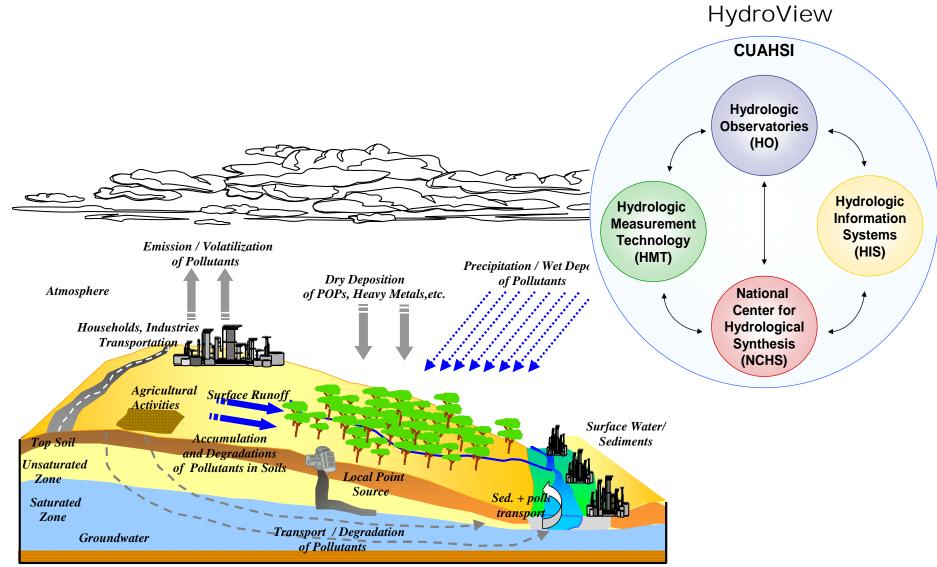
Distributed Science Reality



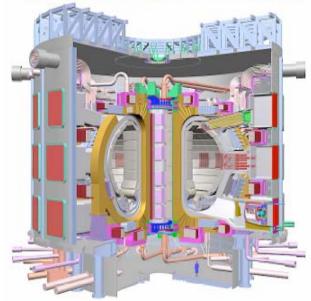
- Collaborations include as many as 1000's of scientists
- Collaborators located all over the world
- Many users never visit the site
- Virtual organization involved in managing the resources
 - Include multiple sites and countries
 - Distributed data storage
 - Distributed compute resources
 - Shared resources
- Do not control the computers users are accessing resources from
- High performance computing, networking, and data transfers are core capabilities needed
- Authentication, authorization, accounting, monitoring, logging, resource management, etc built into middleware
- These new science paradigms rely on robust secure high-performance distributed science infrastructure

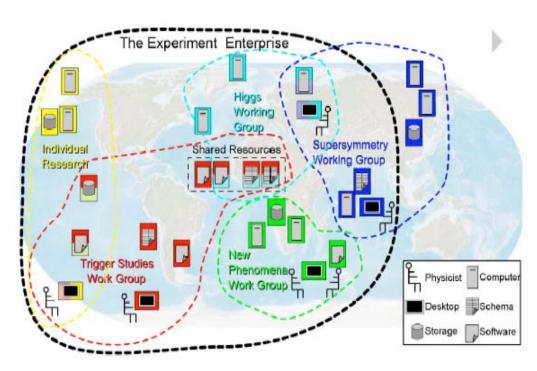


Experiments

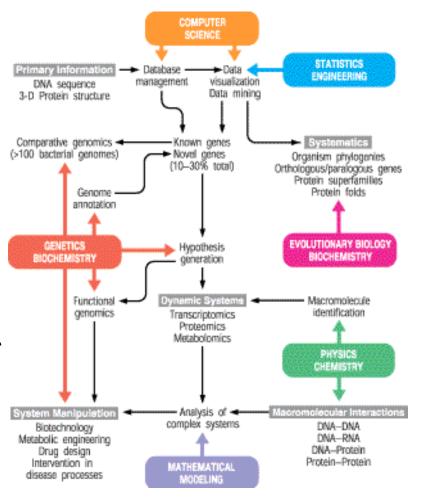

NSF Network for Earthquake Engineering Simulation

Hydrology Synthesis – CUAHSI/NSF





Science Has Become a Team Sport



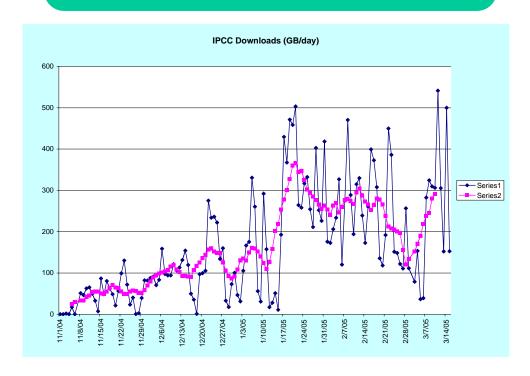
Teams Sharing Data and Expertise

Systems Biology: "studying biological systems by systematically perturbing them (biologically, genetically or chemically); monitoring the gene, protein, and informational pathway responses; integrating these data; and ultimately formulating mathematical models that describe the structure of the system and its responses to individual perturbations" (Ideker et al., 2001 Annu, Rev. Genom. Hum. Genet. 2:343)

Konopka, 2004 ASM News 70:163

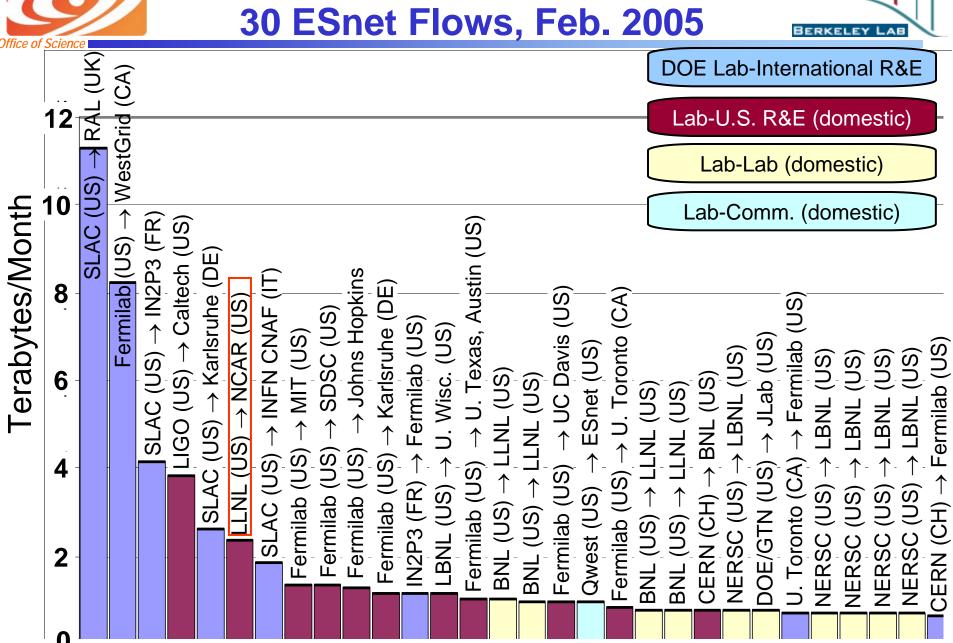
Science Requirements for Networks - 2003

Science Areas	2003 <i>End2End</i> Throughput	5 years End2End Throughput	5-10 Years End2End Throughput	Remarks
High Energy Physics	0.5 Gb/s	100 Gb/s	1000 Gb/s	high bulk throughput
Climate (Data & Computation)	0.5 Gb/s	160-200 Gb/s	N x 1000 Gb/s	high bulk throughput
SNS NanoScience	Not yet started	1 Gb/s	1000 Gb/s + QoS for control channel	remote control and time critical throughput
Fusion Energy	0.066 Gb/s (500 MB/s burst)	0.198 Gb/s (500MB/ 20 sec. burst)	N x 1000 Gb/s	time critical throughput
Astrophysics	0.013 Gb/s (1 TBy/week)	N*N multicast	1000 Gb/s	computational steering and collaborations
Genomics Data & Computation	0.091 Gb/s (1 TBy/day)	100s of users	1000 Gb/s + QoS for control channel	high throughput and steering



Delivering Climate Data

- Earth System Grid (ESG)
 provides production service
 (secure portal) to distribute
 data to the greater climate
 community.
 - Over 18 terabytes (~40k files) published since December 2004
 - About 300 projects registered to receive data
 - Over 22 terabytes of data downloaded (~125K files) with 300 gigabytes daily.
- Analysis results of IPCC data, distributed via ESG, were presented by 130 scientists at a recent workshop (March 2005).


Enabling Access to Climate Data from the Intergovernmental Panel on Climate Change

Source and Destination of the Top

Cybersecurity and Infrastructure to Support Distributed Science

Preserve

- Access to national user facilities
- Participation in international collaborations
- Ability to host scientific databases and repositories
- Innovation and prototyping capabilities

Protect

- High performance computers
- > Experiment systems
- Desktop and laptop systems
- Ability to do science
- Need to figure out how to preserve and support open science while protecting the resources from cyber incidents

Robust Science Support Framework

Web Services, Portals, Collaboration Tools, **Problem Solving Environments**

Authorization

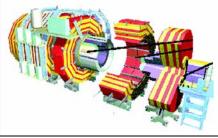
Authentication

Resource Discovery

Communication Secure

And Monitoring Event Services

Transfe Data . Scheduling Data Curation


Application Servers

Asynchrony Support

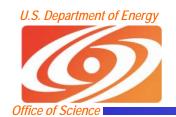
Organization /irtual

Cybersecurity Protections

Current Research Middleware Reality wrt Cybersecurity

- Distributed Science Infrastructure is developed independent of operational cybersecurity considerations
 - Implications of site mechanisms
 - Protections from malicious code
 - Vulnerability testing
 - Interoperability with site cybersecurity mechanisms
 - Not commercial software
- Typically there is a long process of debugging prototype deployments
 - Negotiating ports and protocols with each site's cybersecurity group
 - Debugging unexpected behaviors
 - Debugging middleware security mechanisms
 - Identifying causes of performance problems
- This is a cross-agency and international issue

Science is on the Front Lines


- The techniques needed to protect the open science environment today are needed by other environments tomorrow – Past examples
 - Network intrusion detection
 - Insider threat
 - Defense in depth
 - High performance capabilities
- A next set of concerns
 - Reducing credential theft opportunities
 - Detection of insider attacks
 - Communication and coordination between components to recognize and react to attacks in real time
 - > Tools which address day zero-1 vulnerabilities
 - Improved analysis techniques data mining and semantic level searches
 - Prevention and detection of session hi-jacking

Current Operational Reality

- Cybersecurity group
 - Protect border
 - Protect network
 - Some host protections
 - Control access patterns
- System Administrators
 - Protect hosts
 - Authorize users
 - Define access capabilities
- Applications and software
 - Authenticate users
 - Authorize users
 - Open ports/connect to servers/transfer data
- Virtual Organizations
 - > Fine-grained authorization
 - Policy enforcement

Protecting High Performance Distributed Science

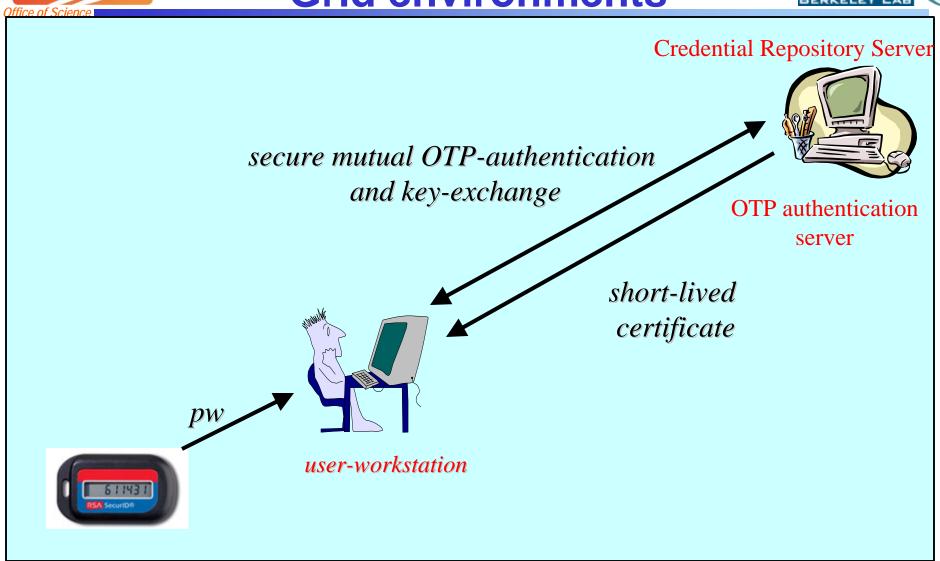
- Coordination between cybersecurity components
 - Border intrusion detection mechanisms
 - Network intrusion detection mechanisms
 - Host security mechanisms
 - Software authentication and authorization mechanisms
- Authentication mechanisms for users who never physically visit the site
- Analysis of cybersecurity data particularly in high-performance environments
- Efficient forensics information gathering
- Cybersecurity as an integral consideration in building middleware
- Proxy mechanisms
- Continuous data collection and data correlation
- Forensics collection including middleware
- Improved recovery capabilities it is currently weeks to recover a supercomputer
- A new operations oriented Cybersecurity R&D effort is needed to help protect open science

Example Advantages of Research and Operations Working Together

Bro – network intrusion detection

- Implemented and deployed through teaming between research and operations
- Introduced layered approach to high-speed intrusion detection
- Protocol awareness allowed detection of anomalous behavior at the protocol level
- Developed policy language and interpreter to describe policy
- Research platform for investigation of new approaches and events
- Developments based on experience with real traffic and the operational environment
- Currently leveraging the Bro communication capabilities to add decryption of encrypted traffic streams

Example2: One-time Password


- Deploying at many sites and facilities to combat credential theft
- Many products out there on the market
- 1-factor, 2-factor, cards, software-based, etc
- Federation an important issue to reduce cost and the number of tokens a user must carry – must be secure to avoid creating cross-site propagation vectors
- Analysis from a cryptographic perspective of the various tools identified important short-comings
- Needs to be integrated with distributed science infrastructure to be fully realized

Using OPKeyX in Grid environments



Proposed Cybersecurity R&D Program

- Coordination of distributed science software infrastructure with cybersecurity mechanisms
 - Authentication, authorization, and encryption in the middleware can coordinate with the cybersecurity systems to open temporary ports etc
- Coordination between cybersecurity components
 - Significantly improve detection of attacks
 - Notify broadly of attacks as they are identified
 - Help recognize insider attacks
 - Improve handling of encrypted sessions
- Improved risk- and mission-based cybersecurity decisions
 - Research and development of methodologies for cyber assessment
- Tools for the high-performance computing environment
 - Analysis tools which can efficiently ingest and analyze large quantities of data
 - Semantic level investigation of data
 - Security tools for high bandwidth reserved paths
- Improved data collection, forensics, recovery
- Focus on practical solutions, integrating middleware security, and working with operations personnel during the development and testing

Conclusions

- Distributed science has become core to the conduct of science
- Robust, secure, and supported distributed science infrastructure is needed
- Attackers are getting more malicious and quicker to exploit vulnerabilities
- Need to set the example for protecting distributed infrastructure
- COTS is a key component of the solution but will not solve many aspects of the problem
- Need to partner cybersecurity operations, cybersecurity researchers, system administrators, and middleware developers